Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
نویسندگان
چکیده
منابع مشابه
On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملThe Randić index and signless Laplacian spectral radius of graphs
Given a connected graph G, the Randić index R(G) is the sum of 1 √ d(u)d(v) over all edges {u, v} of G, where d(u) and d(v) are the degree of vertices u and v respectively. Let q(G) be the largest eigenvalue of the singless Laplacian matrix of G and n = |V (G)|. Hansen and Lucas (2010) made the following conjecture:
متن کاملSpectral radius and signless Laplacian spectral radius of strongly connected digraphs
Article history: Received 15 April 2014 Accepted 5 May 2014 Available online 29 May 2014 Submitted by R. Brualdi MSC: 05C20 05C50 15A18
متن کاملThe Signless Laplacian or Adjacency Spectral Radius of Bicyclic Graphs with Given Number of Cut Edges
LetB(n, r) be the set of all bicyclic graphs with n vertices and r cut edges. In this paper we determine the unique graph with maximal adjacency spectral radius or signless Laplacian spectral radius among all graphs in B(n, r).
متن کاملThe signless Laplacian spectral radius of graphs with given number of cut vertices
In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2016
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-016-0308-4